- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Bhat, Suma (1)
-
Ganapathy_Prasad, Priyadharshini (1)
-
Israel, Maya (1)
-
Meshram, Pragati Shuddhodhan (1)
-
Zhang, Shan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Novice programmers often face challenges in designing computational artifacts and fixing code errors, which can lead to task abandonment and over-reliance on external support. While research has explored effective meta-cognitive strategies to scaffold novice programmers' learning, it is essential to first understand and assess students' conceptual, procedural, and strategic/conditional programming knowledge at scale. To address this issue, we propose a three-model framework that leverages Large Language Models (LLMs) to simulate, classify, and correct student responses to programming questions based on the SOLO Taxonomy. The SOLO Taxonomy provides a structured approach for categorizing student understanding into four levels: Pre-structural, Uni-structural, Multi-structural, and Relational. Our results showed that GPT-4o achieved high accuracy in generating and classifying responses for the Relational category, with moderate accuracy in the Uni-structural and Pre-structural categories, but struggled with the Multi-structural category. The model successfully corrected responses to the Relational level. Although further refinement is needed, these findings suggest that LLMs hold significant potential for supporting computer science education by assessing programming knowledge and guiding students toward deeper cognitive engagement.more » « lessFree, publicly-accessible full text available February 18, 2026
An official website of the United States government
